首页 | 本学科首页   官方微博 | 高级检索  
     

注塑过程子时段动态非线性质量预测
引用本文:郭小萍,王福利,贾明兴. 注塑过程子时段动态非线性质量预测[J]. 系统仿真学报, 2007, 19(12): 2761-2764
作者姓名:郭小萍  王福利  贾明兴
作者单位:1. 沈阳化工学院,信息工程学院,辽宁,沈阳,110142;东北大学信息科学与工程学院,辽宁,沈阳,110004
2. 东北大学信息科学与工程学院,辽宁,沈阳,110004
基金项目:国家重点基础研究发展计划(973计划);国家自然科学基金
摘    要:针对注塑间歇过程多阶段、缓慢时变、非线性和质量变量测量值不能在线获得等特点,提出子时段滑动窗口广义回归神经网络质量预测方法,首先,采用分类算法对三维数据矩阵的时间片PCA负载矩阵进行分析,根据相关性分析把注塑过程划分为几个子时段,然后确定与重量密切相关的阶段,在确定的阶段内采用滑动窗口建立GRNN多模型,解决常规MPLS在工业应用过程中存在的几个潜在问题:(1)静态单一模型;(2)模型失配问题;(3)MPLS线性方法不能充分有效压缩和抽取非线性过程信息;(4)估计未来测量变量所引进的模型偏差。所提方法与子时段滑动窗口MPLS方法进行仿真比较。结果证明了所提方法的有效性。

关 键 词:注塑过程  子时段  质量预测  滑动窗口  广义回归神经网络
文章编号:1004-731X(2007)12-2761-04
收稿时间:2006-05-09
修稿时间:2006-05-092006-06-30

Sub-stage Dynamic and Nonlinear Quality Prediction for Injection Molding Processes
GUO Xiao-ping,WANG Fu-li,JIA Ming-xing. Sub-stage Dynamic and Nonlinear Quality Prediction for Injection Molding Processes[J]. Journal of System Simulation, 2007, 19(12): 2761-2764
Authors:GUO Xiao-ping  WANG Fu-li  JIA Ming-xing
Affiliation:1.information Engineering School, Shenyang Institute of Chemical Technology, Shenyang 110142, China; 2.Information Science and Engineering School, Northeastern University, Shenyang 110004, China
Abstract:For multistage,time-variant,nonlinear characteristic and the unavailable on-line product qualities of injection molding batch process,a sub-stage moving window generalized regression neural network(GRNN) method was proposed.Using an clustering arithmetic,PCA P-loading matrices of time-slice matrices was clustered according to relevance,and injection molding process was divided into several operation stages,the most relevant stage to the quality variable was defined,and applying moving windows to un-fold stage data according to time,sub-stage GRNN models were developed for every windows for on-line quality prediction.The proposed method easily handles the following problems:(1) static single model;(2) process and its model do not match;(3) linear method may not be efficient in compressing and extracting nonlinear process data;(4) errors are added by estimating the future trajectory of the ongoing batch.For comparison purposes,a sub-MPLS quality model of every moving window was established.The results demonstrate the effectiveness of the proposed method.
Keywords:injection molding process  sub-stage  quality prediction  moving window  generalized recursive neural network(GRNN)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号