首页 | 本学科首页   官方微博 | 高级检索  
     

一类二维分数阶偏微分方程解的适定性
引用本文:苏延辉. 一类二维分数阶偏微分方程解的适定性[J]. 福州大学学报(自然科学版), 2015, 43(4): 435-439
作者姓名:苏延辉
作者单位:福州大学数计学院
基金项目:福建省自然科学基金资助项目(面上项目,重点项目,重大项目);国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:研究一类二维分数阶偏微分方程的边值问题,主要包括两方面内容:一是研究了合适的分数阶Sobolev空间及分数阶算子的性质;二是发展了一个弱解的理论框架,并建立了弱解的适定性理论.这是构造数值方法(如有限元和谱方法等)求解二维分数阶偏微分方程的理论基础.

关 键 词:分数阶导数;弱解;变分形式;适定性
修稿时间:2015-04-07

Well-posedness of the 2D-fractional partial differential equations
SU Yanhui. Well-posedness of the 2D-fractional partial differential equations[J]. Journal of Fuzhou University(Natural Science Edition), 2015, 43(4): 435-439
Authors:SU Yanhui
Affiliation:College of mathematics and computer science
Abstract:In this work, we investigate the boundary value problem of two-dimensional fractional partial differential equations (FEPDEs). The main contributions of this work are twofold: first, we investigate suitable fractional Sobolev spaces for fractional partial differential equations and study the properties of the fractional operator. Then, we develop a theoretical framework of weak solution and establish the well-posedness of the weak solution. Consequently, this work provides the theory for constructing numerical method such as finite element method and spectral method for solving the fractional partial differential equations.
Keywords:Fractional derivative   weak solution   variation formulation   well-posedness
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《福州大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号