首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observation of scale invariance and universality in two-dimensional Bose gases
Authors:Hung Chen-Lung  Zhang Xibo  Gemelke Nathan  Chin Cheng
Institution:The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA. clhung@uchicago.edu
Abstract:The collective behaviour of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics; for example, thermodynamic observables follow generalized scaling laws near the phase transition. The Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two-dimensional Bose gases presents a particularly interesting case because the marginal dimensionality and intrinsic scaling symmetry result in a broad fluctuation regime and an extended range of universal scaling behaviour. Studies of the BKT transition in cold atoms have stimulated great interest in recent years, but a clear demonstration of critical behaviour near the phase transition has remained elusive. Here we report in situ density and density-fluctuation measurements of two-dimensional Bose gases of caesium at different temperatures and interaction strengths, observing scale-invariant, universal behaviours. The extracted thermodynamic functions confirm the existence of a wide universal region near the BKT phase transition, and provide a sensitive test of the universality predicted by classical-field theory and quantum Monte Carlo calculations. Our experimental results provide evidence for growing density-density correlations in the fluctuation region, and call for further explorations of universal phenomena in classical and quantum critical physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号