基于隐Markov模型的短时交通崩溃事件预测 |
| |
摘 要: | 交通崩溃事件会造成道路通行能力下降,成为导致城市快速路拥堵的主要原因之一,精准的短时交通崩溃事件预测在交通管理与控制中具有重要意义。该文以美国加州高速公路性能评估系统(PeMS)提供的交通流数据为基础,对道路的崩溃状态进行了分级定义,并以道路崩溃状态为隐状态、道路占有率为显状态,结合二者之间的联系,建立了隐Markov模型。通过数理统计,对模型参数进行了学习,最后采用Viterbi算法对该模型进行了求解,实现了快速路交通崩溃事件的预测。预测结果与实际数据的对比表明:该方法能预测大部分的交通崩溃事件。
|
本文献已被 CNKI 等数据库收录! |
|