首页 | 本学科首页   官方微博 | 高级检索  
     

基于ELM集成和半监督聚类的SNS隐私保护
引用本文:李昆仑,王哲,张娟,武倩,宋嵩. 基于ELM集成和半监督聚类的SNS隐私保护[J]. 河北大学学报(自然科学版), 2013, 33(1): 84-89
作者姓名:李昆仑  王哲  张娟  武倩  宋嵩
作者单位:河北大学电子信息工程学院,河北保定,071002
基金项目:国家自然科学基金资助项目(6107312);国家科技支撑计划项目(2013BAK07B04);河北大学医工交叉研究中心开放基金资助项目(BM201102)
摘    要:针对各类网络数据中存在着大量的无标记数据,导致了SNS(social network service)隐私保护中数据可用性相对较差的问题,本文提出一种基于Bagging的ELM(extreme learning machine)集成算法,并将其与基于Seeds集的半监督聚类算法相结合应用于隐私保护.该算法首先利用ELM-Bagging集成方法对无标记数据进行标记,并将新标记的数据加入Seeds集以扩大其规模,然后采用基于Seeds集的半监督聚类实现K-匿名.实验结果表明,该算法在有效保护隐私的同时,提高了发布数据的可用性.

关 键 词:社会化网络服务  隐私保护  半监督聚类  ELM算法  K-匿名

SNS privacy protection based on the ELM integration and semi-supervised clustering
LI Kunlun , WANG Zhe , ZHANG Juan , WU Qian , SONG Song. SNS privacy protection based on the ELM integration and semi-supervised clustering[J]. Journal of Hebei University (Natural Science Edition), 2013, 33(1): 84-89
Authors:LI Kunlun    WANG Zhe    ZHANG Juan    WU Qian    SONG Song
Affiliation:(College of Electronic and Information Engineering,Hebei University,Baoding 071002,China)
Abstract:Because of vast number of unlabeled data and small amount of labeled data in SNS,the availability of data is relatively poor for the study of SNS privacy preservation.In order to solve the above problem,this paper propose an ELM ensemble algorithm based on Bagging combined with semi-supervised clustering,based on Seeds set for privacy preserving.The main process is as follows: firstly,the ensemble ELM is used to label the unlabeled data to enlarge the scale of Seeds set;secondly,the Seeds set is used to initialize the center of clustering;and finally,the algorithm adopts semi-supervised clustering to achieve K-anonymization.Experimental results show that the method can improve the usability of the released data while preserving privacy.
Keywords:SNS  privacy preservation  semi-supervised clustering  ELM  K-anonymization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号