首页 | 本学科首页   官方微博 | 高级检索  
     

有限区间上多辛Preissmann格式及其附加条件
引用本文:蒋长锦. 有限区间上多辛Preissmann格式及其附加条件[J]. 中国科学技术大学学报, 2002, 32(4): 403-411
作者姓名:蒋长锦
作者单位:中国科学技术大学数学系,安徽合肥,230026
摘    要:对于有限区间上偏微分方程Hamilton型PDEs的多辛Preissmann格式必须引入附加条件 ,否则对于KdV方程是不能使用的 ,而对于G .B .方程则不能得到正确的结果 .论文分别具体给出了KdV方程和G .B .方程的这种附加条件 .数值实例显示使用附加条件后由该格式得到的数值解表示的孤立子演化过程和其对应理论解表示的该过程是一致的 ,且格式是长时间数值稳定的

关 键 词:Hamilton型PDEs  多辛积分  Preissmann格式  附加条件  孤立子  数值解
文章编号:0253-2778(2002)04-0403-09
修稿时间:2001-11-22

Multi-symplectic Preissmann Scheme in Finite Interval and Its Complementary Condition
JIANG Chang jin. Multi-symplectic Preissmann Scheme in Finite Interval and Its Complementary Condition[J]. Journal of University of Science and Technology of China, 2002, 32(4): 403-411
Authors:JIANG Chang jin
Abstract:The multi symplectic Preissmann scheme for the Hamiltonian PDEs of certain PDE in finite interval must have complementary condition to it, othewise it can not be used for the KdV equation and no proper results can be achieved for G.B.equations. Here the complementary condition is given for the KdV and G.B. equation, respectively. The numerical experiments of the Preissmann scheme with the complementary condition in finite intervals show that the temporal evolution of the solitons coincide with the theoratical ones very well and that the scheme is numerically stable over long time.
Keywords:Hamiltonian PDEs  multi symplectic integrators  Preissmann scheme  complementary condition  soliton  numerical solution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号