首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
Institution:1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R.China;2. National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA
Abstract:The active reflector of FAST(five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure,in which nodes are actively controlled to form series of real-time paraboloids.To ensure the security and stability of the supporting structure,tension must be monitored for some typical cables.Considering the stringent requirements in accuracy and longterm stability,magnetic flux sensor,vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net.Specifically,receivers of radio telescopes have strict restriction on electro magnetic interference(EMI) or radio frequency interference(RFI).These three types of sensors are evaluated from the view of EMI/RFI.Firstly,these fundamentals are theoretically analyzed.Secondly,typical sensor signals are collected in the time and analyzed in the frequency domain,which shows the characteristic in the frequency domain.Finally,typical sensors are tested in an anechoic chamber to get the EMI levels.Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI.According to GJB151 A,frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves,testable EMI/RFI levels are typically below the background noise of the anechoic chamber.FAST finally choses these three sensors as the monitoring sensors of its cable tension.The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
Keywords:five-hundred-meter aperture spherical radio telescope (FAST)  cable tension monitoring  magnetic flux  vibrating wire  fiber Bragg  electro magnetic interference (EMI)
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号