首页 | 本学科首页   官方微博 | 高级检索  
     


Two-phase genetic algorithm applied in the optimization of multi-modal function
Authors:Huang Yu-zhen  Kang Li-shanf  Zhou Ai-min
Affiliation:(1) State Key Laboratory of Software Engineering, Wuhan University, 430072 Wuhan, Hubei, China
Abstract:This paper presents a two-phase genetic algorithm (TPGA) based on the multi-parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population’s evolvement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions) usually we can obtain all the global optimal solutions. Foundation item: Supported by the National Natural Science Foundation of China (70071042, 60073043,60133010) Biography: Huang Yu-zhen ( 1977-), female, Master candidate, research direction; evolution computation.
Keywords:optimization of multi-modal function  genetic algorithm  global optimization  local optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号