Abstract: | This paper generalizes the Hopf functional equation in order to apply it to a wider class of not necessarily incompressible fluid flows. We start by defining characteristic functionals of the velocity field, the density field and the temperature field of a compressible field. Using the continuity equation, the Navier-Stokes equations and the equation of energy we derive a functional equation governing the motion of an ideal gas flow and a van der Waals gas flow, and then give some general methods of deriving a functional equation governing the motion of any compressible fluid flow. These functional equations can be considered as the generalization of the Hopf functional equation. |