首页 | 本学科首页   官方微博 | 高级检索  
     

互信息和核熵成分分析的油中溶解气体浓度建模
引用本文:李颖,张国林. 互信息和核熵成分分析的油中溶解气体浓度建模[J]. 山东大学学报(理学版), 2022, 57(7): 43-52. DOI: 10.6040/j.issn.1671-9352.4.2021.247
作者姓名:李颖  张国林
作者单位:宜春学院 数学与计算机学院, 江西 宜春336000
基金项目:国家自然科学基金资助项目(61662083)
摘    要:针对变压器油中溶解气体浓度的预测问题,提出了一种基于互信息和核熵成分分析(KECA)的油中溶解气体浓度预测建模方法。首先,用标准互信息变量选择方法确定模型的输入变量并对选取的输入变量进行相重构;然后,利用Renyi熵信息测度确定KECA核参数并采用KECA对相空间进行特征提取;最后,以核熵成分作为机器学习极限学习机(ELM)的输入,建立变压器油中溶解气体浓度的预测模型。实验结果表明,与灰色模型、支持向量机、BP神经网络建模方法相比,本文提出的方法能够充分利用油中溶解气体浓度信息,因而具有较优的预测精度和泛化能力。

关 键 词:油中溶解气体分析  互信息  机器学习  Renyi熵  核熵成分分析  极限学习机  

Modeling for dissolved gases concentration based on mutual information and kernel entropy component analysis
LI Ying,ZHANG Guo-lin. Modeling for dissolved gases concentration based on mutual information and kernel entropy component analysis[J]. Journal of Shandong University, 2022, 57(7): 43-52. DOI: 10.6040/j.issn.1671-9352.4.2021.247
Authors:LI Ying  ZHANG Guo-lin
Affiliation:School of Mathematics and Computer Science, Yichun University, Yichun 336000, Jiangxi, China
Abstract:Aiming at the testing problem of dissolved gases concentration in transformer oil, a new prediction modeling method based on mutual information(MI)and kernel entropy component analysis(KECA)was proposed. Firstly, normalized mutual information feature selection method was used to select input variables and the phase reconstruction space were reconstructed for them. Then, feature extraction was carried out in the phase reconstruction space by using KECA, meanwhile, the kernel parameter of KECA was determined by Renyi information entropy. At last, kernel entropy components were extracted by KECA and then they were used as the inputs of extreme learning machine(ELM)which was employed to forecast dissolved gases concentration. Experimental results show that compared with grey model, support vector machine(SVM)and BP neural network(BPNN), the proposed model can sufficiently utilize the dissolved gases information, thus it has a better prediction and generalization.
Keywords:dissolved gas-in-oil analysis  mutual information  machine learning  Renyi entropy  kernel entropy component analysis  extreme learning machine  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号