首页 | 本学科首页   官方微博 | 高级检索  
     

基于SCEM-UA算法和全局敏感性分析的水文模型参数优选不确定性研究
引用本文:曹飞凤,张世强,许月萍,楼章华. 基于SCEM-UA算法和全局敏感性分析的水文模型参数优选不确定性研究[J]. 中山大学学报(自然科学版), 2011, 50(2)
作者姓名:曹飞凤  张世强  许月萍  楼章华
作者单位:1. 浙江省水利水电工程局,浙江杭州,310020;浙江大学建筑工程学院水文与水资源工程研究所,浙江杭州,310058
2. 中国科学院寒区旱区环境与工程研究所,甘肃兰州,730000
3. 浙江大学建筑工程学院水文与水资源工程研究所,浙江杭州,310058
基金项目:国家自然科学基金资助项目,科技部国际合作资助项目
摘    要: 针对复杂非线性水文模型参数识别及不确定性分析问题,引入基于马尔可夫链蒙特卡罗思想的SCEM-UA算法,以岷江流域为研究实例,对降雨径流模型的参数优选问题进行了分析,并探讨了该算法在推求参数后验分布的搜索性能和效率。结果发现,SCEM-UA算法能快速有效地推求出参数后验概率分布。同时,开展基于SCEM-UA算法取样的参数全局敏感性分析,对比参数敏感性和后验分布,表明两者密切相关,敏感性强的参数其边缘后验概率密度分布存在明显峰值,相反,敏感性弱的参数其后验概率分布较为平坦且无规律可循,从而导致模型参数的不确定性大大增强。

关 键 词:Markov链蒙特卡罗法  参数优选  SCEM-UA  敏感性分析  不确定性分析  降雨径流概念模型
收稿时间:2010-03-29;

Parameter Optimization of Hydrologic Model Parameters based on Regional Sensitivity Analysis and SCEM-UA Algorithm
CAO Feifeng,ZHANG Shiqiang,XU Yueping,LOU Zhanghua. Parameter Optimization of Hydrologic Model Parameters based on Regional Sensitivity Analysis and SCEM-UA Algorithm[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2)
Authors:CAO Feifeng  ZHANG Shiqiang  XU Yueping  LOU Zhanghua
Affiliation:(1.Bureau of Water Resources &; Hydropower Engineering of Zhejiang Province,Hangzhou 310020,China;2Institute of Hydrology and Water Resources, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;3Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000,China)
Abstract:Shuffled Complex Evolution Metropolis Algorithm(SCEM-UA) is an adaptive Markov Chain Monte Carlo sampler, which can be applied to parameter optimization of nonlinear hydrologic model and uncertainty analysis The efficiency and effectiveness of SCEM UA for sampling the posterior distribution of model parameters are discussed based on the case study of the Min River catchment The results show that SCEM UA algorithm is consistent, effective and efficient in inferring the parameter posterior distribution Moreover, the results of regional sensitivity analysis using samples from SCEM UA algorithm sampler show that sensitivity and posterior distribution of parameters are highly interdependent High sensitive parameters correspond with distinct peak in posterior distribution, while low sensitive parameters correspond with flat posterior distribution which could highlight the uncertainty of model parameters.
Keywords:SCEM-UA
本文献已被 万方数据 等数据库收录!
点击此处可从《中山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中山大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号