首页 | 本学科首页   官方微博 | 高级检索  
     

四维中心仿射几何中由曲线运动导出的高维可积方程
引用本文:李艳艳. 四维中心仿射几何中由曲线运动导出的高维可积方程[J]. 中山大学学报(自然科学版), 2011, 50(2)
作者姓名:李艳艳
作者单位:咸阳师范学院数学与信息科学学院,陕西咸阳,712000
基金项目:国家自然科学基金资助项目,陕西省教育厅自然科学基金资助项目
摘    要: 讨论了四维中心仿射几何中由2+1维的曲线运动导出的高维可积方程。这种曲线运动是通过对四维中心仿射几何中1+1维的曲线运动公式增加一个额外的空间变量y得到的, 它等价于四维中心仿射几何中的曲面运动。证明了2+1维的可积破裂孤立子方程来自于四维中心仿射几何中的这种曲线运动。不仅将已有的三维中心仿射几何中的这种曲线运动推广到了四维中心仿射几何, 还丰富了对2+1维的破裂孤立子方程的几何解释。

关 键 词:中心仿射几何  可积方程  不变曲线流  破裂孤立子方程
收稿时间:2010-03-09;

Higher Dimensional Integrable Equation Induced by Motion of Curves in Four-Dimensional Centro-Affine Geometry
LI Yanyan. Higher Dimensional Integrable Equation Induced by Motion of Curves in Four-Dimensional Centro-Affine Geometry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2)
Authors:LI Yanyan
Affiliation:(Institute of Mathematics and Information Science, Xianyang Normal University,Xianyang 712000, China)
Abstract:The higher-dimensional integrable equation induced by the 2+1-dimensional motion of curves in four-dimensional centro-affine geometry is discussed. The curves motion is obtained by adding an extra space variable y to the 1+1-dimensional curves motion in four-dimensional centro-affine geometry, which is equivalent to the surface motion in four-dimensional centro-affine geometry. It is shown that the 2+1-dimensional breaking soliton equation arises from such motion in four-dimensional centro-affine geometry.The result not only extends the existing curve motion in three-dimensional centro-affine geometry to four-dimensional centro-affine geometry, but also enriches geometric explanation of the 2+1-dimensional breaking soliton equation.
Keywords:centro-affine geometry  integrable equation  invariant curve flow  breaking soliton equation
本文献已被 万方数据 等数据库收录!
点击此处可从《中山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中山大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号