摘 要: | 机器人同时定位与地图构建(SLAM)问题是机器人研究领域的一个重要课题。针对传统的FastSLAM算法具有粒子退化带来的问题,将粒子群优化的思想应用到传统的FastSLAM算法——粒子滤波算法中。在预估过程中,每个粒子综合考虑个体粒子和群体粒子共同的影响,不断优化更新粒子的位置和权重值,在不需要增加粒子数量的情况下,逼近系统的真实后验概率分布,进而使机器人更接近真实系统状态分布。实验结果表明优化后的算法减小了生成地图与实际地图的误差,机器人预测的路径更优化,验证了改进方法的有效可行性。
|