首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据融合的无人机影像碎屑岩岩性识别
引用本文:闫彦芳,邵燕林,王庆,曾齐红,赵坤鹏. 基于数据融合的无人机影像碎屑岩岩性识别[J]. 科学技术与工程, 2024, 24(12): 4869-4875
作者姓名:闫彦芳  邵燕林  王庆  曾齐红  赵坤鹏
作者单位:长江大学地球科学学院;中国石油勘探开发研究院
基金项目:国家自然科学基金重点项目(42130813);湖北省教育厅科技项目(B2021040);中石油科技项目(2021DJ0402)
摘    要:不同类型岩性影像纹理相似性高,基于单一的二维影像进行岩性识别精度较低。本文针对这一问题,开展了顾及影像深度信息的岩性智能识别方法研究。利用无人机影像具有多模态的特性,采用通道叠加、IHS变换、小波变换以及多模态融合四种影像融合方式,将深度信息融入到影像数据中,运用深度卷积神经网络DeepLabv3+进行碎屑岩岩性识别。经人工解译结果对比分析,结果表明,实验区内基于多模态融合影像的岩性识别精度最高,Kappa系数可达76.17%,总体识别精度可提升到91.05%;分析认为,顾及影像深度信息的岩性智能识别方法针对岩层表面不平整,高差落差大的砾岩识别效果有明显提升,但表面平整、高差表现不明显的泥岩和砂岩地层识别效果有待提升,总体为野外碎屑岩露头岩性快速识别提供了新思路。

关 键 词:数据融合  岩性识别  无人机影像  碎屑岩
收稿时间:2023-04-19
修稿时间:2024-04-23

Lithology identification of clastic rock in UAV images based on data fusion
Yan Yanfang,Shao Yanlin,Wang Qing,Zeng Qihong,Zhao Kunpeng. Lithology identification of clastic rock in UAV images based on data fusion[J]. Science Technology and Engineering, 2024, 24(12): 4869-4875
Authors:Yan Yanfang  Shao Yanlin  Wang Qing  Zeng Qihong  Zhao Kunpeng
Affiliation:College of Earth Science, Yangtze University
Abstract:Because of the similarity of texture of different lithology images, the accuracy of lithology identification based on a single two-dimensional image is low. In order to solve this problem, an intelligent lithology identification method based on image depth information is studied in this paper. Firstly, the depth information is fused with the image data by using four image fusion methods: channel superposition, IHS transform, wavelet transform and multi-modal fusion. Then, based on the converted image data fused with depth information, the intelligent identification method of clastic lithology is studied by using deep convolutional neural network DeepLabv3+ technology. The results of intelligent lithology identification by different fusion methods and manual interpretation were compared and analyzed. The results showed that different fusion methods had different lithology identification effects. In the experimental area, the lithology identification accuracy based on multi-modal fusion images was the highest, with kappa coefficient up to 76.17%, and the overall identification accuracy up to 91.05%. The analysis shows that the intelligent lithology identification method taking into account image depth information can significantly improve the identification effect of the gravel with uneven rock surface and large height difference, but the identification effect of the mudstone and sandstone with flat surface and not obvious height difference needs to be improved. This method provides a new technical idea for rapid lithology identification of clastic rock outcrop in a large area in the field.
Keywords:data fusion   lithology recognition   UAV imagery   clastic rock
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号