首页 | 本学科首页   官方微博 | 高级检索  
     

三维谱特征下的汽车尾气评估方法
引用本文:罗德超,刘国平,刘俊,向飞,袁泉,张顺星. 三维谱特征下的汽车尾气评估方法[J]. 重庆大学学报(自然科学版), 2016, 39(1): 120-126. DOI: 10.11835/j.issn.1000-582X.2016.01.016
作者姓名:罗德超  刘国平  刘俊  向飞  袁泉  张顺星
作者单位:1. 中国汽车工程研究院 重庆市车辆排放与节能重点实验室,重庆,400039;2. 重庆邮电大学自动化学院,重庆,400065
基金项目:国家自然科学基金资助项目(61403053);重庆市科技人才培养计划资助项目(cstc2013kjrc-qnrc40005);重庆市教委科学技术研究项目(KJ1400404)。
摘    要:针对汽车尾气排放的非线性、时变性问题,提出一种三维谱特征下的汽车尾气评估方法。该方法利用频谱分析的原理对汽车尾气进行时频转换,得到尾气的三维谱特征。这些三维谱特征作为输入被提交给径向基神经网络,在K均值聚类算法的驱动下,径向基神经网络完成训练与测试,实现对三维谱特征的分类,从而评估相应的汽车尾气排放水平。数值实验结果表明,提出的汽车尾气评估方法具有较高的准确性。

关 键 词:汽车尾气  三维谱特征  径向基神经网络
收稿时间:2015-09-10

An assessment method for automobile exhaust based on three-dimensional spectrogram features
LUO Dechao,LUI Guoping,LIU Jun,XIANG Fei,YUAN Quan and ZHANG Shunxing. An assessment method for automobile exhaust based on three-dimensional spectrogram features[J]. Journal of Chongqing University(Natural Science Edition), 2016, 39(1): 120-126. DOI: 10.11835/j.issn.1000-582X.2016.01.016
Authors:LUO Dechao  LUI Guoping  LIU Jun  XIANG Fei  YUAN Quan  ZHANG Shunxing
Affiliation:Chongqing Key Laboratory of Vehicle Emission & Economizing Energy, China Automotive Engineering Research Institute, Chongqing 400039, P. R. China,Chongqing Key Laboratory of Vehicle Emission & Economizing Energy, China Automotive Engineering Research Institute, Chongqing 400039, P. R. China,Chongqing Key Laboratory of Vehicle Emission & Economizing Energy, China Automotive Engineering Research Institute, Chongqing 400039, P. R. China,Chongqing Key Laboratory of Vehicle Emission & Economizing Energy, China Automotive Engineering Research Institute, Chongqing 400039, P. R. China,Chongqing Key Laboratory of Vehicle Emission & Economizing Energy, China Automotive Engineering Research Institute, Chongqing 400039, P. R. China and College of Automation, Chongqing University of Posts and Telecommunic atlons, Chongqing 400065, P. R. China
Abstract:We present an assessment method of automobile exhaust using three-dimensional spectrogram features to solve the nonlinear and time-varying problems of automobile exhaust emissions. The method takes advantage of spectral analysis to obtain the three-dimensional spectrogram features of automobile exhaust. These three-dimensional spectrogram features, being considered as the input variables, are fed to radial basis function neural network (RBFNN) adapting the K-means algorithm. After completing the training of RBFNN, the three-dimensional spectrograms, being unseen by the network before, are fed to the well-trained network for testing, which achieves the assessment level of automobile exhaust via the classification of three-dimensional spectrogram features. The numerical experiments indicate that the proposed method has a high accuracy.
Keywords:automobile exhaust   three-dimensional spectrogram features   RBF network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号