首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络在电力负荷预测中的应用研究
摘    要:对电力负荷预测相关问题进行研究,结合对电力负荷的精准测量,因为对电力负荷造成影响各因素间具有非线性关系,因素间有冗余信息存在,传统数学模型对于电力负荷的预测准确性较低,为进一步提升电力负荷预测精准度,遂提出一类主成分研究及BP神经网络互相结合电力负荷的预估方法。结合PCA给电力负荷构成影响因素来提取特征,用BP神经网络针对PCA处理所得新变量进行建模,凭借PCA-BP神经网络的模型针对摩的去电力负荷仿真。结果证实,与参比模型比起来,能够有效使各因素间冗余信息消除,减少BP神经网络输入的维数,对网络结构进行简化,明显提升电力负荷的预测精准性,证实电力负荷预测时预测模型可行性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号