首页 | 本学科首页   官方微博 | 高级检索  
     

板坯连铸结晶器异常预报方法研究
引用本文:王旭东,姚曼,张立,陈亚贤. 板坯连铸结晶器异常预报方法研究[J]. 大连理工大学学报, 2008, 48(4): 514-518
作者姓名:王旭东  姚曼  张立  陈亚贤
作者单位:1. 大连理工大学,材料科学与工程学院,辽宁,大连,116024;大连理工大学,三束材料改性国家重点实验室,辽宁,大连,116024
2. 上海宝钢集团公司,上海,201900
基金项目:国家自然科学基金资助项目 , 教育部科学技术研究重点资助项目
摘    要:结晶器是钢水凝固成型的核心设备,其内部的传热和摩擦直接决定铸坯的表面裂纹和满钢等各类异常.是实现高效连铸的关键因素.基于功率法检测到的板坯结晶器摩擦力实测数据,对摩擦力的异常预报方法进行了研究.建立了以BP人工神经网络为基础的异常预报模型,并开发出相应软件.对应现场的异常记录,离线预报结果表明:软件能够对满钢、水口断裂及液位波动等各类异常进行预报,并具有一定的预报提前量.证明了方法的可行性,并显示出极大的应用潜力.

关 键 词:连铸  结晶器  异常  神经元网络

Research on method of prediction for mould abnormalities in slab continuous casting
WANG Xudong,YAO Man,ZHANG Li,CHEN Yaxian. Research on method of prediction for mould abnormalities in slab continuous casting[J]. Journal of Dalian University of Technology, 2008, 48(4): 514-518
Authors:WANG Xudong  YAO Man  ZHANG Li  CHEN Yaxian
Abstract:The mould is the core instrument for primary cooling and slab forming of liquid steel. The interior heat transfer and friction of mould are closely related to the surface defects and breakout, which is very important for effectively continuous casting. Based on the online measured data of mould friction by power-method in slab continuous casting, the method of prediction for abnormalities in continuous casting was studied. A model has been built using BP neural networks, and the software of prediction is also developed. According to the abnormal records of steel plant, the results of simulating prediction show that the software can predict breakout, submerged entry nozzle broken, acute mould level fluctuations and other abnormalities, and can predict earlier than temperature system before some abnormalities happen. The method shows that it is feasible to predict the abnormalities in slab continuous casting, and great potential in application of this method is demonstrated.
Keywords:continuous casting   mould   abnormality   neural network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号