首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法优化机器学习模型的地下水潜在性预测
引用本文:冯希尧,苟俊程,刘瑞,李谷琳,韩佳良,魏良帅. 基于遗传算法优化机器学习模型的地下水潜在性预测[J]. 科学技术与工程, 2024, 24(19): 7988-7998
作者姓名:冯希尧  苟俊程  刘瑞  李谷琳  韩佳良  魏良帅
作者单位:四川省地质局区域地质调查队;成都理工大学;中国地质科学院探矿工艺研究所
基金项目:四川省教育厅人文社会科学重点研究项目(ZHYJ21-YB04);地质灾害防治与地质环境保护国家重点实验室开放基金(SKLGP2022K026)
摘    要:传统机器学习模型在地下水潜在性预测中,未考虑最优因子组合,会对地下水潜在性制图产生不利影响。为此,提出了遗传算法优化支持向量机的地下水潜在性预测方法。以云南省彝良县为研究区,从地形、水文、土壤、地质等方面选取了共15个影响因子;考虑模型性能和影响因子的作用,利用遗传优化算法筛选了包含11个影响因子的最优因子组合;然后使用支持向量机方法构建了地下水潜在性预测模型;最后计算了因子优化前后的模型准确度和受试者工作特性曲线下面积(area under curve,AUC),并绘制了模型的受试者工作特性(receiver operating characteristic,ROC)曲线和地下水潜在性预测图。结果表明:因子优化前模型的准确度为0.774,验证集AUC为0.789,因子优化后模型的准确度为0.777,验证集AUC为0.806,分别提高了0.003和0.017。可见,所提方法的准确性、可靠性优于传统的支持向量机法,其结果可以为区域水文地质调查和地下水资源管理与规划提供科学参考。

关 键 词:地下水  潜在性预测  遗传算法  特征选择  支持向量机
收稿时间:2023-08-01
修稿时间:2024-04-25

Prediction of Groundwater Potential Based on Genetic Algorithm Optimized Machine Learning Model
Feng Xiyao,Gou Juncheng,Liu Rui,Li Gulin,Han Jialiang,Wei Liangshuai. Prediction of Groundwater Potential Based on Genetic Algorithm Optimized Machine Learning Model[J]. Science Technology and Engineering, 2024, 24(19): 7988-7998
Authors:Feng Xiyao  Gou Juncheng  Liu Rui  Li Gulin  Han Jialiang  Wei Liangshuai
Affiliation:Chengdu University of Technology
Abstract:Traditional machine learning models for groundwater potential prediction do not consider the optimal combination of factors, which can adversely affect groundwater potential mapping. For this reason, a groundwater potential prediction method based on genetic algorithm optimization support vector machine is proposed. Taking Yiliang County of Yunnan Province as the study area, a total of 15 influencing factors were selected from topography, hydrology, soil, geology, etc.; considering the model performance and the roles of the influencing factors, the optimal factor combinations containing 11 influencing factors were screened using the genetic optimization algorithm; then the groundwater potential prediction model was constructed using the support vector machine method; finally, the model accuracies and areas under the curves of the receiver operating characteristic (AUCs) before and after the optimization of the factors were calculated, and the receiver operating characteristic (ROC) curves of the model and the groundwater potential prediction maps were plotted. The results show that the accuracy of the model before factor optimization is 0.774, the AUC of the validation set is 0.789, the accuracy of the model after factor optimization is 0.777, and the AUC of the validation set is 0.806, which are increased by 0.003 and 0.017 respectively. It can be seen that the accuracy and reliability of the proposed method are superior to the traditional support vector machine method, and the results can provide scientific reference for regional hydrogeological survey and groundwater resource management and planning.
Keywords:groundwater   potential prediction   genetic algorithm   feature selection   support vector machine
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号