首页 | 本学科首页   官方微博 | 高级检索  
     

一类带变位势的临界指数增长的椭圆型方程组正解
引用本文:万优艳. 一类带变位势的临界指数增长的椭圆型方程组正解[J]. 南通工学院学报(自然科学版), 2013, 0(3): 82-85
作者姓名:万优艳
作者单位:江汉大学数学与计算机科学学院,湖北武汉430056
基金项目:湖北省教育厅科学技术研究计划指导性项目(B2013155,Q20083401)
摘    要:研究了一类带变位势的临界指数增长的椭圆型方程组.通过使用变分法得到的研究结果表明:虽然方程组带变位势,但方程组的能量泛函在零点附近存在局部极小值点,且该极小值点为方程组的正解.此外,当方程组的扰动项趋于零时.该正解也趋于零.

关 键 词:临界指数  变位势  椭圆型方程组  正解

Discussion on Positive Solutions of an Elliptic System with Variable Potentials Involving Critical Sobolev Exponents
WAN You-yan. Discussion on Positive Solutions of an Elliptic System with Variable Potentials Involving Critical Sobolev Exponents[J]. , 2013, 0(3): 82-85
Authors:WAN You-yan
Affiliation:WAN You-yan (School of Mathematics and Computer Science, Jianghan University, Wuhan 430056, China)
Abstract:An elliptic system with variable potentials involving critical Sobolev exponents is studied. By the variation methods, results show that: although the system with variable potentials, there exists a local minimum point of the en- ergy functional related to the system which is near zero, and the local minimum point is a positive solution of this sys- tem. Moreover, this positive solution tends to be zero when the perturbed term goes to zero.
Keywords:critical exponents  variable potentials  elliptic system  positive solutions  existence
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号