首页 | 本学科首页   官方微博 | 高级检索  
     

基于Worldview-II多光谱遥感数据纹理
引用本文:张振兴,李 宁,刘 阳. 基于Worldview-II多光谱遥感数据纹理[J]. 系统工程与电子技术, 2013, 35(10): 2044-2049. DOI: 10.3969/j.issn.1001-506X.2013.10.05
作者姓名:张振兴  李 宁  刘 阳
作者单位:哈尔滨工程大学自动化学院, 黑龙江 哈尔滨 150001
摘    要:提出了一种基于Worldview-II多光谱遥感数据的纹理特征提取方法。该方法针对Worldview II的8个波段,通过主成分分析(principle component analysis, PCA)变换进行多光谱遥感数据压缩,针对压缩后的数据特点建立主成分灰度差频空间(gray level difference frequency space, GLDFS),并利用GLDFS对多光谱遥感数据进行纹理特征提取。实验结果表明,与传统的灰度共生矩阵(gray level co occurrence matrix, GLCM)单波段纹理分析方法相比,该方法能够保持多光谱数据之间的协同关系,具有更高的分类精度和执行效率。


Texture features extraction method based on Worldview-II multi-spectral remote sensing data
ZHANG Zhen-xing,LI Ning,LIU Yang. Texture features extraction method based on Worldview-II multi-spectral remote sensing data[J]. System Engineering and Electronics, 2013, 35(10): 2044-2049. DOI: 10.3969/j.issn.1001-506X.2013.10.05
Authors:ZHANG Zhen-xing  LI Ning  LIU Yang
Affiliation:College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract:A texture features extraction method based on Worldview-II multi-spectral remote sensing data is proposed. Aiming at the eight bands of Worldview-II, the multi spectral remote sensing data are compressed by principle component analysis(PCA) conversion. The principle component gray level difference frequency space (GLDFS) is established according to the compressed data. And then the texture features are extracted using GLDFS. Experimental results show that the proposed method can retain the coordination relationship among multi-spectral remote sensing data. Compared with the traditional single band texture analysis method based on gray level co-occurrence matrix (GLCM), the proposed method has higher classification precision and efficiency
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号