首页 | 本学科首页   官方微博 | 高级检索  
     

龙格—库塔方法与差分法的比较
引用本文:吴志强,张晏铭,秦浩东. 龙格—库塔方法与差分法的比较[J]. 成都大学学报(自然科学版), 2014, 33(4): 337-338,346
作者姓名:吴志强  张晏铭  秦浩东
作者单位:长春工业大学基础科学学院,吉林长春,130012
基金项目:国家自然科学基金,吉林省科技厅基础科学研究
摘    要:利用Taylor级数展开而构造出的龙格—库塔方法是具有高精度的一种算法.将二阶龙格—库塔方法与差分方法的多种计算格式在求解扩散方程中进行了对比.结果表明,当网格比固定时,龙格—库塔方法在计算精度和计算速度上具有明显优势.

关 键 词:龙格—库塔方法  Taylor级数  有限差分法

Comparison of Runge-Kutta Method and Difference Method
WU Zhiqiang,ZHANG Yanming,QIN Haodong. Comparison of Runge-Kutta Method and Difference Method[J]. Journal of Chengdu University (Natural Science), 2014, 33(4): 337-338,346
Authors:WU Zhiqiang  ZHANG Yanming  QIN Haodong
Affiliation:WU Zhiqiang;ZHANG Yanming;QIN Haodong;School of Fundamental Sciences,Changchun University of Technology;
Abstract:The Runge-Kutta method which is constructed from a Taylor expansion is an algorithm with high precision. This paper compares the second order Runge-Kutta method with many computational formats of difference method in solving the diffusion equation. The results show that the Runge-Kutta method has obvious advantages on calculation accuracy and speed when the grid ratio is fixed.
Keywords:Runge-Kutta method  Taylor series  finite difference method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号