基于深度置信网络的车载电源故障诊断方法 |
| |
作者姓名: | 李炜 雷雪 蒋栋年 |
| |
作者单位: | 兰州理工大学电气工程与信息工程学院,甘肃兰州 730050;兰州理工大学甘肃省工业过程先进控制重点实验室,甘肃兰州730050;兰州理工大学电气工程与信息工程学院,甘肃兰州 730050;兰州理工大学甘肃省工业过程先进控制重点实验室,甘肃兰州730050;兰州理工大学电气工程与信息工程学院,甘肃兰州 730050;兰州理工大学甘肃省工业过程先进控制重点实验室,甘肃兰州730050 |
| |
基金项目: | 国家自然科学基金;甘肃省高等学校科研项目 |
| |
摘 要: | 针对车载电源故障机理复杂且知识经验不足,传统浅层神经网络诊断效果难能满意的问题,研究了基于深度置信网络的车载电源故障诊断方法.该方法借助于30 kW车载电源仿真系统采集的几种常见故障数据,通过对深度置信网络进行预训练与反向微调,构建了车载电源相应故障的深度诊断神经网络,从而实现了车载电源几类常见故障的有效智能诊断.该方法的优势在于能够将车载电源的故障特征提取与故障诊断有机融合,摆脱了传统浅层故障诊断方法对大量信号处理技术与诊断经验的依赖,仿真试验也进一步昭示出文中方法在车载电源故障诊断中的有效性和适宜性.
|
关 键 词: | 车载电源 深度置信网络 故障诊断 |
本文献已被 CNKI 万方数据 等数据库收录! |
|