首页 | 本学科首页   官方微博 | 高级检索  
     

Gorenstein平坦维数
引用本文:李雪妍,张文汇. Gorenstein平坦维数[J]. 吉林大学学报(理学版), 2016, 54(6): 1236
作者姓名:李雪妍  张文汇
作者单位:西北师范大学 数学与统计学院, 兰州 730070
摘    要:设W是包含所有内射模的模类. 通过在任意结合环上引入模的覆盖W-Gorenstein平坦维数, 刻画W-Gorenstein平坦模类的投射可解性, 并证明了: 对任意R 模M和任意正整数n, 若模M的覆盖W-Gorenstein平坦维数为n, 则存在R 模的正合列0→K→H→M→0, 其中[WT]fd(K)=n-1, H是W-Gorenstein平坦模; W- Gorenstein平坦维数不超过覆盖W-Gorenstein平坦维数, 且当覆盖W-Gorenstein平坦维数有限时, 二者相等.

关 键 词:Gorenstein平坦维数  W-GF闭环  覆盖W-Gorenstein平坦维数  
收稿时间:2016-03-01

W-Gorenstein Flat Dimension
LI Xueyan,ZHANG Wenhui. W-Gorenstein Flat Dimension[J]. Journal of Jilin University: Sci Ed, 2016, 54(6): 1236
Authors:LI Xueyan  ZHANG Wenhui
Affiliation:College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract:Let W be a class of modules that contained all injective modules. By introducing the cover W-Gorenstein flat dimension of modules over associativering, we described that a class of W-Gorenstein flat modules was projectively resolving, and proved that for every R module M and every positiveinteger n, if the cover 〖WTHT〗W〖WT〗 Gorenstein flat dimension of R module M was n, then there existed an exact sequence of R modules 0→K→H→M→0 such that fd(K)=n-1 and H was W-Gorenstein flat module. At the same time, we proved that the W- Gorenstein flat dimension was less than the cover W-Gorenstein flat dimension and they were equivalent when the cover W-Gorenstein flat dimension was finite.
Keywords:W-Gorenstein flat dimension  W-GF closed ring  cover W-Gorenstein flat dimension
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号