首页 | 本学科首页   官方微博 | 高级检索  
     

有限样本下模型选择理论与方法研究
引用本文:盛守照,王道波,黄向华. 有限样本下模型选择理论与方法研究[J]. 系统工程与电子技术, 2005, 27(4): 730-733
作者姓名:盛守照  王道波  黄向华
作者单位:南京航空航天大学自动化学院,江苏,南京,210016
基金项目:航空基金项目资助课题 (0 1C5 2 0 15 )
摘    要:从理论上给出有限样本下模型选择的方法,详细讨论了样本噪声对模型选择的影响,提出了一种次优模型选择算法,并进一步给出了一种推挽式模型选择算法,它能够有效地提高模型选择的学习速度。两种算法具有很强的抗噪声能力,预测模型也具有很好的推广性。最后通过具体数值试验验证了上述理论和方法的可行性和优越性。

关 键 词:模型选择  算法  统计学习理论  机器学习
文章编号:1001-506X(2005)04-0730-04
修稿时间:2004-03-31

Theory and method of model selection under limited samples
SHENG Shou-zhao,WANG Dao-bo,HUANG Xiang-hua. Theory and method of model selection under limited samples[J]. System Engineering and Electronics, 2005, 27(4): 730-733
Authors:SHENG Shou-zhao  WANG Dao-bo  HUANG Xiang-hua
Abstract:The method of model selection with limited samples is given in theory, and the noise's effect on the model selection is discussed. A suboptimal algorithm for model selection is proposed, then a push-pull algorithm for model selection is further presented, which can improve the learning speed of model selection effectively. The two algorithms have excellent anti-noise performance, and the prediction model has strong ability of generalization. The reliability and advantage of the above theory and method are illustrated through tests.
Keywords:model selection  algorithm  statistical learning theory  machine learning
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号