首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识和外观方法相结合的后方车辆检测
引用本文:文学志,ZHAO Hong,赵宏,王楠,袁淮. 基于知识和外观方法相结合的后方车辆检测[J]. 东北大学学报(自然科学版), 2007, 28(3): 333-336. DOI: -
作者姓名:文学志  ZHAO Hong  赵宏  王楠  袁淮
作者单位:1. 东北大学,信息科学与工程学院,辽宁,沈阳,110004
2. 东软集团有限公司,汽车电子先行技术研究中心,辽宁,沈阳,110179
摘    要:单独应用基于知识的方法或者单独应用基于外观方法检测是否存在车辆有一定的局限性,因此提出将二者结合起来用于静态图像后方车辆的检测.首先,利用分割算法获得感兴趣的区域(region of interest,ROI),利用基于知识(如车底阴影、颜色等信息)的方法,将被确认为是非车辆(背景)的ROI过滤掉,然后再对过滤后的结果应用基于外观的方法进行车辆检测.在不同的道路(高速公路、城市普通道路和城市窄道)条件以及白天不同光照条件下对车辆进行检测,结果表明,该算法的识别可靠性更高,适应性更好.

关 键 词:智能运输系统  辅助驾驶系统  车辆检测  特征提取  支持向量机  
文章编号:1005-3026(2007)03-0333-04
收稿时间:2006-03-22
修稿时间:2006-03-22

Rear-Vehicle Detection Combining Both Knowledge-Based and Appearance-Based Methods
ZHAO Hong. Rear-Vehicle Detection Combining Both Knowledge-Based and Appearance-Based Methods[J]. Journal of Northeastern University(Natural Science), 2007, 28(3): 333-336. DOI: -
Authors:ZHAO Hong
Affiliation:(1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (2) Advanced Automotive Electronic Technology Research Center, Neusoft Group Ltd., Shenyang 110179, China
Abstract:There is unavoidably a limit to either knowledge-based or appearance-based methods when using any of them singly to detect the existence of vehicles.An algorithm combining both of them is therefore proposed to detect rear-vehicles in static images.First,the ROIs(regions of interest) obtained from segmentation algorithm are filtered which are regarded as belonging to background by using knowledge-based methods such as the shadow underneath a vehicle and color information.Then,the vehicles are detected with appearance-based methods on the remains.The detection results of vehicles traveling on highways,urban common roads and urban narrow roads under various illumination conditions on daytime indicated that the proposed algorithm has better reliability and higher adaptability than either of the algorithms singly based on knowledge or appearance.
Keywords:intelligent transportation system(ITS)  driver assistant system(DAS)  vehicle detection  feature extraction  support vector machine(SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号