首页 | 本学科首页   官方微博 | 高级检索  
     检索      


pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-gamma-S
Authors:W F Boron  E Hogan  J M Russell
Institution:Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
Abstract:The regulation of intracellular pH (pHi) is essential for normal cell function, and controlled changes in pHi may play a central role in cell activation. Sodium-dependent Cl-HCO3 exchange is the dominant mechanism of pHi regulation in the invertebrate cells examined, and also occurs in mammalian cells. The transporter extrudes acid from the cell by exchanging extracellular Na+ and HCO3- (ref. 9) (or a related species) for intracellular Cl- (refs 3, 4). It is blocked by the stilbene derivatives DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonate, ref. 10) and SITS (4-acetamido-4'-isothiocyano-stilbene-2,2'-disulphonate, ref. 3), and has a stoichiometry of two intracellular H+ neutralized for each Na+ taken up and each Cl- extruded by the axon. Because the inwardly-directed Na+ concentration gradient is sufficiently large to energize both the HCO3- influx and Cl- efflux, this electroneutral exchanger could be a classic secondary active transporter, thermodynamically independent of ATP hydrolysis. However, at least in the squid axon, the exchanger has an absolute requirement for ATP (ref. 3). Thus, a major unresolved issue is whether this Na-dependent Cl-HCO3 exchanger stoichiometrically hydrolyses ATP (the pump hypothesis), or whether ATP activates the transporter by a mechanism such as phosphorylation or simple binding (the activation hypothesis). We have now explored the role of ATP in pHi regulation by dialysing axons with the ATP analogue ATP-gamma-S. In many systems, ATP-gamma-S is an acceptable substrate for protein kinases, whereas the resulting thiophosphorylated proteins are not as readily hydrolysed by phosphatases as are phosphorylated proteins. Our results rule out the pump hypothesis, and show that the basis of the axon's ATP requirement is the pH-dependent activation (by, for instance, phosphorylation or ATP binding) of the exchanger itself, or of an essential activator.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号