首页 | 本学科首页   官方微博 | 高级检索  
     

前方车辆检测的特征融合算法研究与实现
摘    要:为了解决前方车辆检测的鲁棒性和实时性问题,提出了一种基于车辆形态特征和类HAAR特征融合的前方车辆检测优化算法.为了克服车底阴影提取易受外部环境因素影响的缺陷,采用猴王遗传算法(monkey king genetic algorithm,MKGA)进行阈值分割,提取车底阴影部分;然后通过车辆形态特征一次筛选得到感兴趣区域,并对感兴趣区域的类HAAR特征进行提取和降维,输入支持向量机(support vector machine,SVM)训练好的汽车分类器进行二次筛选.随机抽取视频的300帧进行算法验证,实验结果表明:算法在复杂环境下能够实现车辆检测,并且相比于单一特征的检测方法,准确率由80%提高至90%;利用类HAAR特征积分图和主成分分析(principal component analysis,PCA)降维能够有效地提高检测速度.算法满足驾驶辅助系统准确性和实时性的要求.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号