首页 | 本学科首页   官方微博 | 高级检索  
     

基于样本数据重抽样的时序数据预报方法
引用本文:郝善勇 刘玉树. 基于样本数据重抽样的时序数据预报方法[J]. 北京理工大学学报, 2000, 20(5): 581-584
作者姓名:郝善勇 刘玉树
作者单位:北京理工大学,计算机科学与工程系,北京,100081
摘    要:研究时序数据预报和提高预报精度的方法,提出了一种新的利用误差项对时序数据样本进行BootStrap重抽样的方法。该方法采用神经网络技术建立时序数据预报模型,并通过重抽样技术提高预报精度。通过BootStrap算法与BP算法的预报偏差平方和比较说明BootStrap算法提高了预报精度,将提出的重抽样技术引入时序数据预测中,可提高神经网络的预测精度,并适用于股票价格及外汇交易预测等效应领域。

关 键 词:时序数据预报 重抽样 神经网络 样本数据

Using Resampling Technique to Make Prediction of Time Series
HAO Shan yong,LIU Yu shu. Using Resampling Technique to Make Prediction of Time Series[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2000, 20(5): 581-584
Authors:HAO Shan yong  LIU Yu shu
Abstract:The method of predicting time series and the method of improving the accuracy of prediction were studied. It proposed a new way to resample time series based on residues. ANN model was used to analyze time series and BootStrap method was used to improve the precision of prediction. By comparing the results of BootStrap method with those of BP algorithm it was elucidated that BootStrap is applicable. If BootStrap method is introduced into time series analysis, the precision of ANN can be improved. In addition, this method could be utilized in the fields of foreign exchange trading and the prediction of stock price.
Keywords:prediction of time series  BootStrap method  resampling  residue  neural network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号