首页 | 本学科首页   官方微博 | 高级检索  
     

基于联合动态稀疏表示方法的多图像人脸识别算法
引用本文:张佳宇,彭力. 基于联合动态稀疏表示方法的多图像人脸识别算法[J]. 江南学院学报, 2014, 0(3): 287-291
作者姓名:张佳宇  彭力
作者单位:江南大学物联网工程学院,江苏无锡214122
基金项目:江苏省产学研联合创新项目(BY2013015-33).
摘    要:采用联合动态稀疏表示方法构造一种新型的多图像人脸识别模型.该模型在多张人脸图像的稀疏表示矩阵上,利用动态数集得到联合动态稀疏表示矩阵,识别多图像的人脸.在多张人脸图像作为测试样本的情况下,利用多图像之间的关联性提高人脸图像识别的准确率.最后利用CMU人脸图像库对该算法进行仿真,结果表明其识别率较其他算法有很大的提高.

关 键 词:人脸识别  稀疏表示  CMU人脸库  多图像  识别率

Multiple Views Face Recognition Algorithm Based on the Joint Dynamic Sparse Representation
ZHANG Jiayu,PENG Li. Multiple Views Face Recognition Algorithm Based on the Joint Dynamic Sparse Representation[J]. Journal of Jiangnan College, 2014, 0(3): 287-291
Authors:ZHANG Jiayu  PENG Li
Affiliation:1.School of Internet of Things Engineering,Jiangnan University,Wuxi 214122, China)
Abstract:Multi-view face recognition is one of the difficult problems.In this paper,a new multi-view face recognition model is structured by the joint dynamic sparse representation.We use the dynamic number set to obtain the joint dynamic sparse representation matrix so as to recognize face on the base of multi-view face image sparse representation matrix.Taking different multi-faces as samples,it turns out that the proposed algorithm in this paper can improve face recognition accuracy.Finally,the simulation results on the CMU facial image database demonstrate that the proposed algorithm has a higher recognition rate than other algorithms.
Keywords:face recognition  sparse representation  CMU face library  multiple views  recognition rate
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号