首页 | 本学科首页   官方微博 | 高级检索  
     

基于网格搜索与支持向量机的轴承故障诊断
引用本文:杨婧,续婷,白艳萍,燕慧超. 基于网格搜索与支持向量机的轴承故障诊断[J]. 科学技术与工程, 2021, 21(22): 9360-9364
作者姓名:杨婧  续婷  白艳萍  燕慧超
作者单位:中北大学信息与通信工程学院,太原030051;中北大学理学院,太原030051
基金项目:国家自然科学基金项目(61774137);山西省研究生教育创新项目(2020SY387);山西省自然科学基金项目(201801D121026,201701D121012,201701D221121);山西省回国留学人员科研资助项目(2020-104,2016-088);山西省重点研发计划项目(201903D121156)
摘    要:针对轴承故障诊断问题,提出一种基于相关度分析与网格搜索算法(GS)优化支持向量机(SVM)的轴承故障诊断方法.采用GS算法对SVM的惩罚参数c和核函数参数g进行寻优,以此建立分类器用于识别轴承故障类型.在模型建立方面巧妙地加入了分层的思想,通过相关度分析之后采用多层GS-SVM模型使轴承的故障诊断准确率相对于近年来的研...

关 键 词:轴承  故障诊断  支持向量机  网格搜索
收稿时间:2020-12-07
修稿时间:2021-06-09

A bearing fault diagnosis method based on GS-SVM
Yang Jing,Xu Ting,Bai Yanping,Yan Huichao. A bearing fault diagnosis method based on GS-SVM[J]. Science Technology and Engineering, 2021, 21(22): 9360-9364
Authors:Yang Jing  Xu Ting  Bai Yanping  Yan Huichao
Affiliation:North University of China
Abstract:Aiming at the problem of bearing fault diagnosis, a method of bearing fault diagnosis based on correlation analysis and SVM (support vector machine) optimized by GS (grid search optimization) was proposed. GS algorithm was used to optimize SVMs penalty parameter c and kernel function parameter g, so as to establish a classifier for bearing fault identification. In the aspect of model establishment, the idea of stratification was subtly added. After the correlation analysis, the multi-layer GS-SVM was adopted, which significantly improved the accuracy of bearing fault diagnosis compared with recent researches. Finally, the rolling bearing fault samples from case western reserve university were used in the classification and identification experiments. The experimental results show that the proposed bearing fault diagnosis method can not only effectively identify the normal condition of bearing, inner ring fault, outer ring fault and ball fault, but also distinguish the severity of each kind of fault, improve the diagnostic accuracy of fault samples, and has strong practicability.
Keywords:bearing   fault diagnosis   support vector machine   the grid search
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号