首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的反无人机预警神经网络
引用本文:孙颢洋,王欣,曹昭睿,白帆,王兴,郝永平,王俊杰. 基于深度学习的反无人机预警神经网络[J]. 科学技术与工程, 2021, 21(22): 9461-9469
作者姓名:孙颢洋  王欣  曹昭睿  白帆  王兴  郝永平  王俊杰
作者单位:沈阳理工大学装备工程学院,沈阳110159;沈阳理工大学机械工程学院,沈阳110159;沈阳理工大学理学院,沈阳110159
基金项目:装备预研重点实验室基金(6142107190207);
摘    要:为解决传统雷达探测设备面对"低小慢"无人机时产生的难检测与易突防问题,通过深度卷积神经网络对空中无人机进行实时识别,提取目标的类别与像空间位置信息;根据无人机像空间位置在时域下的变化趋势,绘制无人机飞行映射轨迹;利用长短期记忆网络对飞行映射轨迹进行预测,获取无人机在未来时域内的预测航迹方向,实现对无人机的预警跟踪、实时检测与轨迹推断。结果表明,所提出的算法中目标识别平均准确率可达到82%,轨迹预测平均准确率可达到80%计算速度可达到24帧/秒,可见能够在地基计算平台下对空中无人机进行实时精确预警,可以有效地防止识别领空内的非合作无人机渗透与突防。

关 键 词:无人机预警  卷积神经网络  长短记忆网络  目标识别  轨迹预测
收稿时间:2020-12-17
修稿时间:2021-06-10

Research on Neural Network for Early Warning Recognition and Trajectory Prediction of Anti-UAV Based on Deep Learning
Sun Haoyang,Wang Xin,Cao Zhaorui,Bai Fan,Wang Xing,Hao Yongping,Wang Junjie. Research on Neural Network for Early Warning Recognition and Trajectory Prediction of Anti-UAV Based on Deep Learning[J]. Science Technology and Engineering, 2021, 21(22): 9461-9469
Authors:Sun Haoyang  Wang Xin  Cao Zhaorui  Bai Fan  Wang Xing  Hao Yongping  Wang Junjie
Affiliation:Shenyang Ligong University School of Mechanical Engineering,Shenyang Liaoning; Shenyang Ligong University School of Equipment Engineering,Shenyang Liaoning
Abstract:Aiming at the problems of difficult detection and easy penetration of traditional radar detection equipment when facing low-speed-small UAV, an UAV recognition and trajectory prediction algorithm based on deep convolution neural network and long-short-term memory neural network is proposed. The deep convolution neural network is used to identify the UAV in real time and extract the target category and image space position information. According to the change trend of UAV image space position in time domain, the UAV flight mapping trajectory is drawn. The long-short-term memory network is used to predict the flight mapping trajectory, and the predicted track direction of UAV in the future time domain is obtained to realize the unmanned aerial vehicle early warning and tracking, real-time detection and trajectory inference.The experimental results show that the average accuracy of target recognition and trajectory prediction can reach 82% and 80% in 24 frames per second. It can give real-time and accurate warning to UAV in the ground-based computing platform, and can effectively prevent the penetration and penetration of non-cooperative UAV in the airspace.
Keywords:deep Learning  convolution neural network   long short memory network   machine vision   vehicle Behavior
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号