首页 | 本学科首页   官方微博 | 高级检索  
     

基于云计算和改进极限学习机的电网负荷预测
引用本文:冯桂玲,郑鹭洲,蒋宏烨,李思韬. 基于云计算和改进极限学习机的电网负荷预测[J]. 科学技术与工程, 2021, 21(22): 9411-9417
作者姓名:冯桂玲  郑鹭洲  蒋宏烨  李思韬
作者单位:国网福州供电公司,福州35009
基金项目:国家电网公司总部科技项目资助:电、水、气、热能源计量一体化采集关键技术研究及应用(Sgfjfz00yxjs)
摘    要:随着智能电网和通信技术的迅速发展,电网系统采集的用户数据规模呈指数增长,传统电网负荷预测方法难以满足海量负荷数据情形下的高效分析和计算需求.据此,依托电力系统数据采集云平台,提出一种基于云计算和改进极限学习机的电网负荷预测模型,采用Map-Reduce网络架构,部署于Hadoop平台,利用分布式计算方式进行电网负荷的精...

关 键 词:智能电网  电力负荷预测  Map-Reduce网络  改进极限学习机
收稿时间:2020-12-09
修稿时间:2021-06-23

A Power Grid Load Forecasting Model Utilizing Cloud Computing and Improved Extreme Learning Machine under Massive Data Acquisition
Feng Guiling,Zheng Luzhou,Jiang Hongye,Li Sitao. A Power Grid Load Forecasting Model Utilizing Cloud Computing and Improved Extreme Learning Machine under Massive Data Acquisition[J]. Science Technology and Engineering, 2021, 21(22): 9411-9417
Authors:Feng Guiling  Zheng Luzhou  Jiang Hongye  Li Sitao
Affiliation:State Grid Fuzhou Electric Power Supply Company
Abstract:With rapid development of smart grid and communication technology, the scale of user data collected by power grid system has been growing exponentially, and conventional electric power load forecasting algorithms are difficult to deal with the requirement of efficient analysis and calculation in massive data situation. Therefore, based on cloud acquisition platform, we present a power grid load forecasting model combining cloud computing and improved extreme learning machine (ELM). It adopts the Map-Reduce network architecture and is deployed in Hadoop platform, and utilizes the distributed computing technique to carry out accurate modeling and forecasting analysis of power grid load. Experimental results demonstrate that the proposed method has the advantages of higher accuracy and faster operation speed compared with existing methods, which can provide a novel solution for the construction and management of smart grid in the future.
Keywords:massive  data acquisition  smart power  grids electric  power load  forecasting Map-Reduce  network improved  extreme learning  machine
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号