首页 | 本学科首页   官方微博 | 高级检索  
     

改进的Alexnet模型在水稻害虫图像识别中的应用
引用本文:肖小梅,杨红云,易文龙,万颖,黄琼,罗建军. 改进的Alexnet模型在水稻害虫图像识别中的应用[J]. 科学技术与工程, 2021, 21(22): 9447-9454
作者姓名:肖小梅  杨红云  易文龙  万颖  黄琼  罗建军
作者单位:江西农业大学软件学院,南昌330045;江西农业大学计算机与信息工程学院,南昌330045
基金项目:国家自然科学(NO.61562039,NO.61762048)第一作者:肖小梅(1995-),女,汉,江西赣州,硕士研究生。研究方向:图形图像处理及深度学习,E-mail:15779090506@163.com*通讯作者:杨红云(1975-),男,汉,江西南昌,硕士,副教授。研究方向:图形图像处理及机器学习,E-mail:nc_yhy@163.com
摘    要:深度学习技术能以端对端方式实现农作物害虫识别,克服了传统机器学习方法特征选择具有主观性以及提取特征操作繁琐等不足,但识别的准确率和鲁棒性仍有待提高.为了研究出一种快速,高效的水稻害虫识别方法,本研究以稻纵卷叶螟、三化螟、稻蝗、稻飞虱4种常见的水稻害虫为研究对象,对传统的卷积神经网络Alexnet进行优化改进.首先从自然...

关 键 词:水稻虫害  Alexnet模型  批归一化  全局平均池化  激活函数PReLU
收稿时间:2020-12-22
修稿时间:2021-06-12

Application of Improved Alexnet in Image Recognition of Rice Pests
Xiao Xiaomei,Yang Hongyun,Yi Wenlong,Wan Ying,Huang Qiong,Luo Jiangjun. Application of Improved Alexnet in Image Recognition of Rice Pests[J]. Science Technology and Engineering, 2021, 21(22): 9447-9454
Authors:Xiao Xiaomei  Yang Hongyun  Yi Wenlong  Wan Ying  Huang Qiong  Luo Jiangjun
Affiliation:School of Software,Jiangxi Agricultural University;School of Computer Science and Information,Jiangxi Agricultural University
Abstract:In order to develop a rapid and efficient identification method for rice pests, the four common rice pests, rice leaf roller, yellow rice borer, rice grasshopper and rice planthopper, were taken as the research objects to optimize and improve the traditional convolutional neural network, Alexnet. Firstly, we should obtain the images of 4 different rice pests from the natural environment and Internet, and the images should be preprocessed by methods of quantity amplification and detail enhancement. Then, the traditional convolutional neural network Alexnet is optimized and improved. Instead of using LRN for local normalization, the improved Alexnet introduces BN layer for batch normalization after each convolutional layer. In addition, global average pooling and PReLU activation function were used to optimize Alexnet. The experimental results show that: 1) The accuracy of the improved model on the pest data set is not less than 98%, which is 1.96% higher than the original network and higher than the traditional network such as LeNet5, VGG13 and VGG16. 2) The loss value of the improved model is stable around 0.03, which is 0.1 lower than the original network and lower than the traditional network such as LeNet5, VGG13 and VGG16. The experimental results show that the improved method has a higher accuracy and better robustness in the classification of rice pests, which can provide a new idea and method for the intelligent identification of crop pests
Keywords:rice pest   Alexnet   Batch Normalization   Global averaging pooling   PReLU
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号