首页 | 本学科首页   官方微博 | 高级检索  
     

受限空间细水雾作用下烟气温度变化规律研究
引用本文:房玉东,苏国锋,林霖,廖光煊. 受限空间细水雾作用下烟气温度变化规律研究[J]. 自然科学进展, 2008, 18(4): 475-480
作者姓名:房玉东  苏国锋  林霖  廖光煊
作者单位:1. 清华大学公共安全研究中心,北京,100084
2. 中国科学技术大学火灾科学国家重点实验室,合肥,230026
摘    要:利用热电偶测量细水雾作用下烟气层不同高度温度,研究雾滴粒径、雾通量和喷头与火源的水平距离等因素对平均细水雾降温速率(V)的影响规律.揭示了细水雾抑制火灾烟气温度的主导机理.利用实验数据推导V与雾通量之间的数学关系,建立V空间分布的三维数学模型,为细水雾技术用于火灾烟气抑制提供理论基础和必要的设计参数.

关 键 词:细水雾  烟气  温度
修稿时间:2007-01-24

Quantum-inspired evolutionary tuning of SVM parameters
Zhiyong Luo,Ping Wang,Yinguo Li,Wenfeng Zhang,Wei Tang,Min Xiang. Quantum-inspired evolutionary tuning of SVM parameters[J]. , 2008, 18(4): 475-480
Authors:Zhiyong Luo  Ping Wang  Yinguo Li  Wenfeng Zhang  Wei Tang  Min Xiang
Abstract:Common used parameters selection method for support vector machines (SVM) is cross-validation, which needs a long-time complicated calculation. In this paper, a novel regularization parameter and kernel parameter tuning approach of SVM is presented based on quantum-inspired evolutionary algorithm (QEA). QEA with quantum chromosome and quantum mutation has better global search capacity. The parameters of least squares support vector machines (LS-SVM) can be adjusted using quantum-inspired evolutionary optimization. Classification and function estimation are studied using LS-SVM with wavelet kernel and Gaussian kernel. The simulation results show that the proposed approach can effectively tune the parameters of LS-SVM , and the improved LS-SVM with wavelet kernel can provide better precision.
Keywords:quantum-inspired evolutionary algorithm (QEA)   parameters tuning   support vector machines (SVM)   least squares support vector machines (LS-SVM)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《自然科学进展》浏览原始摘要信息
点击此处可从《自然科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号