首页 | 本学科首页   官方微博 | 高级检索  
     

基于生物地理学模糊C均值聚类的图像分割算法
引用本文:朱丽莉,李真真. 基于生物地理学模糊C均值聚类的图像分割算法[J]. 应用科技, 2012, 0(5): 67-70
作者姓名:朱丽莉  李真真
作者单位:[1]中国华粮物流集团北良有限公司,辽宁大连116001 [2]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
摘    要:提出了一种基于模糊C均值算法和生物地理学优化算法的混合聚类算法(BBO-FCM).该算法结合了生物地理学优化算法的全局搜索和FCM算法快速局部搜索的特点,利用生物地理中的迁移算子来进行各解之间的信息共享,从而有效地克服了FCM对初始值敏感、易陷入局部最优等问题.将BBO-FCM算法用于图像分割,实验表明,新算法的聚类效果评价指数更好,聚类效果明显优于原始的FCM算法.

关 键 词:生物地理学优化算法  模糊C均值算法  BBO-FCM算法  图像分割

Image segmentation algorithm based on biogeography-based optimization and fuzzy C means clustering
ZHU Lili,LI Zhenzhen. Image segmentation algorithm based on biogeography-based optimization and fuzzy C means clustering[J]. Applied Science and Technology, 2012, 0(5): 67-70
Authors:ZHU Lili  LI Zhenzhen
Affiliation:1. Beiliang Co., Ltd, China Grains & Logistics Corporation, Dalian 116001, China 2. College of Automation, Harbin Engineering University, Harbin 150001, China)
Abstract:A new hybrid clustering algorithm based on biogeography-based optimization and fuzzy C means algorithm (BBO-FCM) is proposed in this paper. By incorporating the fast local search ability of FCM and the global search of biogeography-based optimization which mainly uses the biogeography-based migration operator to share the information among solutions, the algorithm eliminates FCM trapped local optimum and is sensitive to initial value. BBO-FCM algorithm is applied to image segmentation. The experimental results show that the clustering evaluation index of the new algorithm is better and the clustering effect is apparently superior to the initial FCM algorithm.
Keywords:biogeography-based optimization algorithm  fuzzy C mean algorithm  BBO-FCM algorithm  image segmentation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号