首页 | 本学科首页   官方微博 | 高级检索  
     

利用混沌遗传算法的几何约束求解器
引用本文:高诚,李文辉,曹春红. 利用混沌遗传算法的几何约束求解器[J]. 吉林大学学报(理学版), 2005, 43(4): 481-484
作者姓名:高诚  李文辉  曹春红
作者单位:1. 北华大学计算机科学与技术学院, 吉林省 吉林 132021; 2. 吉林大学计算机科学与技术学院, 长春 130012
基金项目:国家自然科学基金(批准号:69883004).
摘    要:提出一种新的混合算法--变尺度混沌遗传算法(MSCGA), 该算法把遗传算法和混沌算法混合在一起, 在不改变GA搜索机制的同时, 根据搜索进程, 不断缩小优化变量的搜索空间及调节系数, 引导种群进行新一轮进化, 从而产生更优的最优个体, 改善了GA的性能, 有效地克服了GA存在的问题. 实验表明, 该方法用于几何约束求解的性能明显高于标准遗传算法及其他混合遗传算法, 取得了令人满意的效果.

关 键 词:几何约束求解  混沌优化算法  变尺度混沌遗传算法  
文章编号:1671-5489(2005)04-0481-04
收稿时间:2005-01-03
修稿时间:2005-01-03

A Geometric Constraint Solver Using Chaos Genetic Algorithm
GAO Cheng,LI Wen-hui,CAO Chun-hong. A Geometric Constraint Solver Using Chaos Genetic Algorithm[J]. Journal of Jilin University: Sci Ed, 2005, 43(4): 481-484
Authors:GAO Cheng  LI Wen-hui  CAO Chun-hong
Affiliation:1. College of Computer Science and Technology, Beihua University, Jilin 132021, Jilin Province, China;2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract:A new hybrid algorithmmutative scale chaos genetic algorithm (MSCGA) is presented which mixes genetic algorithm with chaos optimization method. The character of this new method is that the mechanism of the GA is not changed but the search space and the coefficient of the adjustment of the optimization (parameter) are reduced continually, which leads to generation evolution to the next generation in order to produce better optimization individuals so as to improve the performance of the GA and get over the disadvantage of the GA. The examination indicates that this algorithm shows a better performance than the normal GA and other hybrid methods in geometric constraint solution and acquires satisfied result.
Keywords:geometric constraint solving  chaos optimization method  mutative scale chaos genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号