首页 | 本学科首页   官方微博 | 高级检索  
     

立体视觉神经网络定位方法
引用本文:刘艳梅,陈震,薛定宇,徐心和. 立体视觉神经网络定位方法[J]. 辽宁工程技术大学学报(自然科学版), 2006, 25(1): 91-93
作者姓名:刘艳梅  陈震  薛定宇  徐心和
作者单位:东北大学,信息科学与工程学院,辽宁,沈阳,110004;沈阳航空工业学院,信息科学,辽宁,沈阳,110023;东北大学,信息科学与工程学院,辽宁,沈阳,110004
基金项目:国家高技术研究发展计划项目(2001AA422270)
摘    要:为了解决计算机视觉中摄摄像机标定存在的若干问题,根据立体视觉原理,提出了基于神经网络的测避方法,利用神经网络建立空间点世界坐标与图像坐标非线性映射关系,使系统不经过复杂的摄摄像机内外参数标定,就能将二维像坐标(输入)与三维物坐标(输出)一一对应起来,并与传统的定位方法进行了比较.实验表明,该方法有效可行,简化了视觉系统的标定和定位计算,较之传统方法更具科学性,在定位精度上达到了良好效果。

关 键 词:计算机视觉  立体视觉  摄摄像机标定  人工神经网络
文章编号:1008-0562(2006)01-0091-03
修稿时间:2004-10-12

Stereovision location method based on neural networks
LIU Yan-mei,CHEN Zhen,XUE Ding-yu,XU Xin-he. Stereovision location method based on neural networks[J]. Journal of Liaoning Technical University (Natural Science Edition), 2006, 25(1): 91-93
Authors:LIU Yan-mei  CHEN Zhen  XUE Ding-yu  XU Xin-he
Abstract:To solve solid seeing demarcate problems,on the basis of computer vision,a new stereovision measurement technology based on neural network is proposed.Artificial neural networks are used to learn the relationships between the image information and the 3D information.For two-cameras system,the complicated relation between the cameras is established by training the network without the parameters of the cameras calibrated.It neither requires an accurate mathematical model nor needs any prior knowledge about the parameters.The 3D information of target is achieved from network output.Experiment results verify the efficiency and simplicity of the method.The method improves the accuracy and the robustness in comparison with traditional stereovision location methods.
Keywords:computer vision  stereovision  artificial neural network  camera calibration
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号