首页 | 本学科首页   官方微博 | 高级检索  
     

基于MDI与进化计算相结合的HMM训练方法
引用本文:曹玉东. 基于MDI与进化计算相结合的HMM训练方法[J]. 重庆邮电大学学报(自然科学版), 2008, 20(2): 236-240
作者姓名:曹玉东
作者单位:攀枝花学院,电气工程系,四川,攀枝花,617000
摘    要:MDI为HMM训练的优化准则之一,但传统的MDI是基于局部最优求解的,所得的解也是一个局部最优解,而进化计算则是基于全局搜索的。为此,提出了将MDI及进化计算相结合来训练HMM的方法。各个模型用个体来表示,个体的适应值采用模型的最小差别信息。实验结果表明,该方法所得的系统识别率高于传统的方法。

关 键 词:最小差别信息  进化计算  隐含马尔柯夫模型  语音识别
文章编号:1673-825X(2008)02-0236-05
收稿时间:2007-01-16
修稿时间:2007-01-16

HMM training method based on MDI and evolutionary computation
CAO Yu-dong. HMM training method based on MDI and evolutionary computation[J]. Journal of Chongqing University of Posts and Telecommunications, 2008, 20(2): 236-240
Authors:CAO Yu-dong
Affiliation:Department of Electrical Engineer, Panzhihua College, Panzhihua 617000,P.R.China
Abstract:Minimum discrimination information (MDI) is one of the optimization criteria for HMM training. With traditional MDI training method, it can only gain a local optimum solution for it is based on local search, but evolutionary computation is based on global search. Hence, a new training method is proposed based on evolutionary computation and MDI. Each individual in evolutionary computation represents a HMM, while the fitness value of each individual represents the minimum discrimination information. The experimental results indicate that the system's recognition rate trained with the proposed method is superior to the one trained with traditional training method.
Keywords:minimum discrimination information (MDI)   evolutionary computation   hidden Markov model (HMM)   speech recognition
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号