首页 | 本学科首页   官方微博 | 高级检索  
     

基于圆形采样和稀疏表示模型的鲁棒目标跟踪
引用本文:王保宪,唐林波,陈聪葱,赵保军,王水根,王洪友. 基于圆形采样和稀疏表示模型的鲁棒目标跟踪[J]. 北京理工大学学报, 2016, 36(9): 983-990. DOI: 10.15918/j.tbit1001-0645.2016.09.019
作者姓名:王保宪  唐林波  陈聪葱  赵保军  王水根  王洪友
作者单位:北京理工大学信息与电子学院,北京 100081;石家庄铁道大学大型结构健康诊断与控制研究所,河北,石家庄050043;北京理工大学信息与电子学院,北京,100081;白城兵器试验中心,吉林,白城137001
基金项目:国家“八六三”计划项目(2012AA8012011C)
摘    要:为解决基于稀疏表示的跟踪算法在小样本空间中出现模板漂移而在大样本空间中实时性差的问题,提出了一种基于圆形采样的双重稀疏表示目标跟踪算法.该算法对跟踪矩形窗数据进行圆形采样,这不仅保证了目标的灰度和结构信息,而且减少了背景信息干扰.同时对稀疏表示得到的小模板系数引入距离权重判断函数,判断目标样本变化情况,提高模板更新效率.最后引入HOG(histogram of oriented gradient)特征,对稀疏表示得到的多个次优解进行二次稀疏表示,有效解决小样本数量少带来的估计误差.实验结果表明,该算法能够提高小样本空间中目标跟踪的鲁棒性和实时性. 

关 键 词:稀疏表示  目标跟踪  模板漂移
收稿时间:2014-03-10

Robust Object Tracking Based on Circle Sampling and Sparse Representation
WANG Bao-xian,TANG Lin-bo,CHEN Cong-cong,ZHAO Bao-jun,WANG Shui-gen and WANG Hong-you. Robust Object Tracking Based on Circle Sampling and Sparse Representation[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2016, 36(9): 983-990. DOI: 10.15918/j.tbit1001-0645.2016.09.019
Authors:WANG Bao-xian  TANG Lin-bo  CHEN Cong-cong  ZHAO Bao-jun  WANG Shui-gen  WANG Hong-you
Affiliation:1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;Structure Health Monitoring and Control Institute, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China2.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China3.Baicheng Weapen Test Center, Baicheng, Jilin 137001, China
Abstract:In order to deal with the drawbacks of template drifting in small sample space and the bad real-time performance in large sample space with the tracking algorithm based on sparse representation model, a tracking approach based on double sparse representation and circle shape sampling was proposed. The image data obtained from tracking rectangular frame were sampled with circle shape sampling model, not only preserving grayscale and structure information of tracking object, but also cutting down the disturbance from background pixels. Meanwhile, the trivial template coefficients gotten from sparse representation were analyzed with a distance weighting function to be used for obtaining target sample changing condition and improving efficiency of template updating. Finally, HOG(histogram of oriented gradient)feature was introduced for once more sparse representation to the second-best sparse solutions, which can cut down estimation error in small sample space. Experimental results show that the proposed algorithm can improve the robustness and efficiency of object tracking in small sample space.
Keywords:sparse representation  object tracking  template drifting
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号