首页 | 本学科首页   官方微博 | 高级检索  
     

基于正则化RBF神经网络的软测量技术及其在质量预测中的应用
引用本文:高倩,阎威武,邵惠鹤. 基于正则化RBF神经网络的软测量技术及其在质量预测中的应用[J]. 系统仿真学报, 2005, 17(7): 1609-1612,1678
作者姓名:高倩  阎威武  邵惠鹤
作者单位:上海交通大学电子信息及电气工程学院自动化系,上海,200030
基金项目:国家"十五"863重大项目基金资助课题(2002AA412010)
摘    要:神经网络对噪声污染数据的过拟合是模型设计中主要考虑的问题。将Tiknonov正则化方法用于RBF神经元网络的设计,在网络学习中将正交最小二乘与前向选择相结合进行网络参数的估计,通过k均值聚类算法获得网络中心,采用L-曲线方法进行正则参数估计,并将该正则化RBF网络用于气体分馏装置产品质量的预测。仿真结果表明,该模型简单易行,并具有较快的计算速度和较好的泛化能力。

关 键 词:正则化 RBF网络 软测量 泛化
文章编号:1004-731X(2005)07-1609-04

Regularized RBF Network-Based Inferential Sensor and Its Application in Product Quality Prediction
GAO Qian,YAN Wei-wu,SHAO Hui-he. Regularized RBF Network-Based Inferential Sensor and Its Application in Product Quality Prediction[J]. Journal of System Simulation, 2005, 17(7): 1609-1612,1678
Authors:GAO Qian  YAN Wei-wu  SHAO Hui-he
Abstract:The risk of overfitting on noisy data is of major concern in neural network design. Regularization provides a stable solution to function approximation with a tradeoff between accuracy and smoothness of the solutions. k-means cluster algorithm is applied to determine the network centers at first and an approach based on L-curve is then proposed to estimate regularization parameter. These estimations are conbimed with forward selection to update network parameters in training. Simulation results show that RBFN with a suitable regularization parameter can get a good generalization.
Keywords:regularization   radial basis function network   inferential sensor   generalization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号