首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度聚类的通信辐射源个体识别方法
引用本文:贾鑫,蒋磊,郭京京,齐子森. 基于深度聚类的通信辐射源个体识别方法[J]. 空军工程大学学报(自然科学版), 2024, 25(1): 115-122
作者姓名:贾鑫  蒋磊  郭京京  齐子森
作者单位:1.空军工程大学信息与导航学院,西安,710077;2.93184部队, 北京,100076
基金项目:国家自然科学基金(62131020)
摘    要:针对非合作通信条件下缺少标签数据的通信辐射源个体识别问题,提出了一种基于深度聚类的通信辐射源个体识别方法。利用自编码器网络强大的特征提取和数据重构能力对原始I/Q数据进行表征学习,提取个体识别的指纹特征,同时将表征学习过程和特征聚类过程进行联合优化,使表征学习和特征聚类契合度更高,更好地完成无标签条件下的通信辐射源个体识别。通过对5种ZigBee设备采集的信号进行实验,结果表明在信噪比高于0 dB时,可以达到85%以上的识别准确率,证明了本文方法的有效性和稳定性。

关 键 词:个体识别  深度聚类  无监督  通信辐射源  特征提取  数据重构

A Communication Emitter Identification Method Based on Deep Clustering
JIA Xin,JIANG Lei,GUO Jingjing,QI Zisen. A Communication Emitter Identification Method Based on Deep Clustering[J]. Journal of Air Force Engineering University(Natural Science Edition), 2024, 25(1): 115-122
Authors:JIA Xin  JIANG Lei  GUO Jingjing  QI Zisen
Affiliation:1.Information and Navigation School,Air Force Engineering University, Xi’an 710077, China;2.Unit 93184,Beijing 100076,China
Abstract:Aimed at the problem that individual identification of communication radiation sources has a certain lack of label data under conditions of non-cooperative communication, a method of individual identification of communication emitter is proposed based on deep clustering. The powerful feature extraction and data reconstruction capabilities of the auto-encoder network are utilized for carrying out the representation learning of the original I/Q data, extracting the fingerprint features of individual recognition, and jointly optimizing the representation learning process and the feature clustering process, so as to achieve a higher fit between the representation learning and the feature clustering, and complete still greater individual identification of the communication emitter without labels. The experimental results show that the recognition accuracy is more than 85% when the SNR is above 0 dB. And the proposed method is valid and stable.
Keywords:individual identification   deep clustering  unsupervised  communication radiation sources  feature extraction  data reconstruction
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号