摘 要: | M-矩阵作为特殊矩阵类在高阶稀疏线性方程组的迭代法求解中有重要作用,尤其是M-矩阵的逆矩阵的无穷大范数的上界估计在数值代数中具有重要意义。如许多代数方程组问题的收敛性条件、条件数等需要计算‖A~(-1)‖_∞,但当M-矩阵A的阶数较大时,其逆矩阵很难求,因此‖A~(-1)‖_∞估计是十分重要的问题。首先引入一组新的记号,给出严格对角占优M-矩阵A的逆矩阵A~(-1)的元素满足的两个不等式;此外得到了‖A~(-1)‖_∞的上界新估计式,这些估计式避免了求逆矩阵A~(-1)而直接利用矩阵A的元素表示,最后给出矩阵A的最小特征值q(A)下界的新估计式。理论分析和数值算例表明新估计式改进了相关结果。
|