首页 | 本学科首页   官方微博 | 高级检索  
     

一种模糊控制小生境遗传算法的应用研究
引用本文:牟在根,梁杰,隋军,颜谋. 一种模糊控制小生境遗传算法的应用研究[J]. 北京科技大学学报, 2006, 28(3): 299-302
作者姓名:牟在根  梁杰  隋军  颜谋
作者单位:1. 北京科技大学土木与环境工程学院,北京,100083
2. 广州市市政工程设计研究院,广州,510060
摘    要:基于遗传算法的基本原理,提出一种改进的遗传算法,将模糊控制思想与小生境技术引入到其中,从而保护种群的多样性,同时使每代最优解得以保存.遗传算法加入小生境技术后虽可保持种群群体的多样性,但是不可避免的会产生部分个体的早熟以及陷入局部最优,于是加入模糊控制思想,对种群的交叉概率Pc和变异概率Pm进行模糊控制,以此为基础,形成了一种新型的模糊控制小生境遗传算法.最后通过对三个典型函数的数值分析证明了该方法的有效性和可行性.

关 键 词:遗传算法  小生境技术  模糊控制  交叉概率  变异概率  模糊控制  小生境遗传算法  应用  研究  genetic algorithm  niche  study  有效性  方法  分析证明  数值  函数  变异概率  交叉概率  最优解  局部  群体  术后  保存  护种
收稿时间:2005-06-27
修稿时间:2005-11-03

Application study on a fuzzy-controlled niche genetic algorithm
MU Zaigen,LIANG Jie,SUI Jun,YAN Mou. Application study on a fuzzy-controlled niche genetic algorithm[J]. Journal of University of Science and Technology Beijing, 2006, 28(3): 299-302
Authors:MU Zaigen  LIANG Jie  SUI Jun  YAN Mou
Abstract:Based on the keystone of genetic algorithm(GA),improvements are made to simple genetic algorithm(SGA)in two aspects.The theory of fuzzy control and the niche technique are introduced into the GA,for the purpose of enhancing the population diversity and maintaining the best part of each genera- tion.In order to avoid premature convergence and occurrence of minimal deceptive problems,which is caused by the niche technique,fuzzy control is presented for the controlling of the crossover probability P_c and mutation probability P_m.Above all,that is the new type of algorithm-fuzzy controlled niche genetic al- gorithm(FNGA).Through comparisons to FGA and NGA with the optimization of several functions,the result of the new algorithm shows its feasibility and reliability.
Keywords:genetic algorithm  niche technique  fuzzy control  crossover probability  mutation probability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号