首页 | 本学科首页   官方微博 | 高级检索  
     

基于引力的入侵检测方法
引用本文:蒋盛益,李庆华. 基于引力的入侵检测方法[J]. 系统仿真学报, 2005, 17(9): 2202-2206
作者姓名:蒋盛益  李庆华
作者单位:1. 广东外语外贸大学信息学院,广东广州,510420;华中科技大学,计算机学院,湖北武汉,430074
2. 华中科技大学,计算机学院,湖北武汉,430074
基金项目:国家自然科学基金项目(60273075)
摘    要:将万有引力的思想引入聚类分析,提出一种基于引力的聚类方法和度量聚类异常程度的引力因子概念,同时给出了一种计算聚类闽值的简单而有效的方法,在此基础上提出一种新的入侵检测方法GBID,GBID关于数据库的大小、属性个数具有近似线性时间复杂度,这使得GBID具有好的扩展性。在KDDCUP99数据集上的测试结果表明,GBID在准确性方面优于文献中已有无指导入侵检测方法,且对新的入侵有一定的检测能力。

关 键 词:万有引力 聚类 引力因子 入侵检测
文章编号:1004-730X(2005)09-2202-05
收稿时间:2004-08-02
修稿时间:2004-12-23

Gravity-based Intrusion Detection Approach
JIANG Sheng-yi,LI Qing-hua. Gravity-based Intrusion Detection Approach[J]. Journal of System Simulation, 2005, 17(9): 2202-2206
Authors:JIANG Sheng-yi  LI Qing-hua
Affiliation:JIANG Sheng-yi, LI Qing-hua (1.School of Informatics ,Guangdong University of Foreign Studies ,Guangzhou 510420, China; 2.Computer School, Huazhong University of Science
Abstract:The idea of universal gravitation was introduced to clustering analysis, and a gravity-based clustering algorithm and a simple method calculating clustering threshold were presented. The gravity factor measured deviating degree of a cluster and a new intrusion detection approach, which named GBID, were proposed. Time complexity of the detection approach is nearly linear with the size of dataset and the number of attributes, which results in good scalability. The experimental results on dataset KDDCUP99 show that GBID outperforms the existing unsupervised intrusion detection approaches on accuracy and has capability to detect unknown intrusions.
Keywords:Universal gravitation   Clustering   Gravity factor   Intrusion detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号