首页 | 本学科首页   官方微博 | 高级检索  
     

电视图像目标实时分割与识别算法
引用本文:苗常青,汪渤,付梦印,徐学强. 电视图像目标实时分割与识别算法[J]. 北京理工大学学报, 2005, 25(9): 786-790
作者姓名:苗常青  汪渤  付梦印  徐学强
作者单位:北京理工大学,信息科学技术学院自动控制系,北京,100081
摘    要:研究一种电视图像目标实时分割和识别算法.在二维图像不变矩和相对矩的基础上,进一步组合优化得出4个不变矩,结合复数矩、圆方差和椭圆方差组成目标特征向量,利用k-近邻法实现目标的识别和分类.图像分割采用改进矩不变阈值分割和基于梯度的自适应阈值分割提取目标.仿真实验表明,提取的目标特征量对于平移、缩放和旋转均能保持较好的不变性.用该分割算法分割的图像边缘清晰,分割时间为8 ms,易于硬件实现.

关 键 词:图像分割  特征提取  目标识别  组合不变矩  电视图像  标实  时分割  识别算法  Algorithm  Recognition  硬件实现  分割时间  边缘清晰  算法分割  不变性  旋转  平移  特征量  仿真实验  提取  自适应  梯度  阈值分割  矩不变
文章编号:1001-0645(2005)09-0786-05
收稿时间:2004-09-23
修稿时间:2004-09-23

Real-Time Image Segmentation and Recognition Algorithm for TV Seeker
MIAO Chang-qing,WANG Bo,FU Meng-yin and XU Xue-qiang. Real-Time Image Segmentation and Recognition Algorithm for TV Seeker[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2005, 25(9): 786-790
Authors:MIAO Chang-qing  WANG Bo  FU Meng-yin  XU Xue-qiang
Affiliation:Department of Automatic Control, School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:The real-time image segmentation and recognition algorithm for a TV seeker is developed. Based on Hu 's invariant moments and relative moments, a novel pattern recognition method is presented, which can classify the targets by using the four invariant moments after further optimized and combine, together with the complex moment, circularity variance and ellipse variance to construct the eigenvector of the image, the improved moment-preserving thresholding method and the adaptive gradient thresholding method are used to pick-up targets. The results of experiments show that the target eigenvectors have the property of translation, rotation and scaling invariance. The segmentation algorithm can segment the images automatically, completely and rapidly its hardware is easy.
Keywords:image segmentation  feature extraction  target recognition  combined invariant moment
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号