首页 | 本学科首页   官方微博 | 高级检索  
     

含离散时滞造血模型的渐近性及周期解
引用本文:田亚品,陈斯养. 含离散时滞造血模型的渐近性及周期解[J]. 黑龙江大学自然科学学报, 2007, 24(4): 555-560
作者姓名:田亚品  陈斯养
作者单位:陕西师范大学,数学与信息科学学院,西安,710062;陕西师范大学,数学与信息科学学院,西安,710062
基金项目:国家自然科学基金资助项目(60671063),陕西师范大学青年科研基金(2002年)
摘    要:研究含离散时滞造血模型的渐近性及周期解.利用函数的单调性、构造Lyapunov函数、分支理论及周期函数正交性等方法分别得到了该模型正平衡态的存在唯一性的充要条件、全局吸引性的充分条件、分支周期解的近似表达式.运用Matlab举出实例并绘出了血液模型数值解的拟合图象.

关 键 词:造血模型  周期解  全局渐近性  Hopf分支
文章编号:1001-7011(2007)04-0555-06
修稿时间:2006-05-26

The asymptoticy and periodic solution in a hematopoiesis model with decrete delay
Tian Yapin,Chen Siyang. The asymptoticy and periodic solution in a hematopoiesis model with decrete delay[J]. Journal of Natural Science of Heilongjiang University, 2007, 24(4): 555-560
Authors:Tian Yapin  Chen Siyang
Abstract:The global asymptoticy of the positive equlibria and Hopf bifurcation periodic solution in a hematopoiesis model with decrete delays are studied.The necessary and sufficient conditions of the existence and uniquity of the positive equlibria by applying functional derivative is obtained,the global attractiveness of the positive equlibria is investigated by stucturing Lyapunov function and bifurcation values for the existence of bifurcation periodic solution are derived and the form of the approximate peridic solution is obtained by using the solvability condition.Some specific examples are given and the solution diagrame appears by Matlab.
Keywords:hematopoiesis  periodic solution  global asymptoticy  Hopf bifurcation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号