摘 要: | §1.H.B.Phillips曾推廣了Hamilton-Cayley的定理如下: 設F(x_1,…,x_r)=A_1x_1+…+A_rx_r,其中A_i為n階方陣,x_i為不定量,f(x_1,…,x_r)=det F(x_1,…,x_r)。如果M_1,…,M_r為兩兩可交換的n階方陣使F(M_1,…,M_r)=0,則M_1,…,M_r滿足多項式f(x_1,…,x_r)即f(M_1,…,M_r)=0。 A.Ostrowski又將Phillips的結果推廣:以φ(x_1,…,x_r)表示F(x_1…,x_r)的所有n-1階子式的最大公因式,且命f(x_1,…,x_r)/φ(x_1,…,x_r)=f_1(x_1,…,x_r),則M_1,…,
|