首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hidden magnetic excitation in the pseudogap phase of a high-T(c) superconductor
Authors:Li Yuan  Balédent V  Yu G  Bari?i? N  Hradil K  Mole R A  Sidis Y  Steffens P  Zhao X  Bourges P  Greven M
Institution:Department of Physics, Stanford University, Stanford, California 94305, USA.
Abstract:The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T(c)) copper oxides-a set of anomalous physical properties below the characteristic temperature T* and above T(c)-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa(2)CuO(4+δ) that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56?meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号