首页 | 本学科首页   官方微博 | 高级检索  
     

熵(Ⅱ)
引用本文:钱小吾. 熵(Ⅱ)[J]. 洛阳大学学报, 2005, 20(4): 17-23
作者姓名:钱小吾
作者单位:镇江高等专科学校,数理系,江苏,镇江,212003
摘    要:介绍了解决遍历理论经典问题的Kolmogorov熵,以及为研究拓扑动力系统而产生的拓扑熵等概念,进而引导读者对这一引人入胜的领域去进行研究.

关 键 词:  Kolmogorov熵  拓扑熵
文章编号:1007-113X(2005)04-0017-07
收稿时间:2005-09-15
修稿时间:2005-09-15

Entropy(Ⅱ)
QIAN Xiao-wu. Entropy(Ⅱ)[J]. Journal of Luoyang University, 2005, 20(4): 17-23
Authors:QIAN Xiao-wu
Abstract:In most cases, the degree of indefiniteness in an indefinite problem can be described mathematically. The mathematical measure of the indefiniteness is entropy, established to solved the classic problem of the in an indefinite problem can be described mathe- called entropy. This paper discusses Kolmogorov ergodic the topological dynamical system. The purpose of this paper is this area. theory, and topology entropy, advanced to study to encourage readers to make further studies in
Keywords:entropy   Kolmogorov entropy   topological entropy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号