摘 要: | 电气设备图像自动分割识别是电力设备无人巡检系统的核心技术。根据变电站电气设备3 996幅人工巡检图像库,建立并标记了含1 730幅图像的巡检数据集。针对Mask R-CNN网络对图像边缘信息处理不佳、小目标识别率低等问题,提出多元特征金字塔结构,引入带空洞空间卷积的池化金字塔模块,提出多元空洞特征金字塔网络,有效克服尺度变化带来的漏检现象。在自建数据集上的识别与实例分割对比测试显示,文中网络能准确识别避雷器、电流互感器等6类典型的电气设备,识别精度和分割精度较经典网络分别提高4%和6%,能有效识别小尺度目标。
|